Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 6(7): e2326445, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37523181

RESUMO

Importance: Although the clinical utility of genome sequencing for critically ill children is well recognized, its utility for proactive pediatric screening is not well explored. Objective: To evaluate molecular findings from screening ostensibly healthy children with genome sequencing compared with a gene panel for medically actionable pediatric conditions. Design, Setting, and Participants: This case series study was conducted among consecutive, apparently healthy children undergoing proactive genetic screening for pediatric disorders by genome sequencing (n = 562) or an exome-based panel of 268 genes (n = 606) from March 1, 2018, through July 31, 2022. Exposures: Genetic screening for pediatric-onset disorders using genome sequencing or an exome-based panel of 268 genes. Main Outcomes and Measures: Molecular findings indicative of genetic disease risk. Results: Of 562 apparently healthy children (286 girls [50.9%]; median age, 29 days [IQR, 9-117 days]) undergoing screening by genome sequencing, 46 (8.2%; 95% CI, 5.9%-10.5%) were found to be at risk for pediatric-onset disease, including 22 children (3.9%) at risk for high-penetrance disorders. Sequence analysis uncovered molecular diagnoses among 32 individuals (5.7%), while copy number variant analysis uncovered molecular diagnoses among 14 individuals (2.5%), including 4 individuals (0.7%) with chromosome scale abnormalities. Overall, there were 47 molecular diagnoses, with 1 individual receiving 2 diagnoses; of the 47 potential diagnoses, 22 (46.8%) were associated with high-penetrance conditions. Pathogenic variants in medically actionable pediatric genes were found in 6 individuals (1.1%), constituting 12.8% (6 of 47) of all diagnoses. At least 1 pharmacogenomic variant was reported for 89.0% (500 of 562) of the cohort. In contrast, of 606 children (293 girls [48.3%]; median age, 26 days [IQR, 10-67 days]) undergoing gene panel screening, only 13 (2.1%; 95% CI, 1.0%-3.3%) resulted in potential childhood-onset diagnoses, a significantly lower rate than those screened by genome sequencing (P < .001). Conclusions and Relevance: In this case series study, genome sequencing as a proactive screening approach for children, due to its unrestrictive gene content and technical advantages in comparison with an exome-based gene panel for medically actionable childhood conditions, uncovered a wide range of heterogeneous high-penetrance pediatric conditions that could guide early interventions and medical management.


Assuntos
Testes Genéticos , Genômica , Feminino , Criança , Humanos , Recém-Nascido , Penetrância , Exoma
2.
Mol Genet Metab ; 139(1): 107565, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087815

RESUMO

The Lantern Project is an ongoing complimentary diagnostic program for patients in the United States sponsored by Sanofi and implemented by PerkinElmer Genomics. It combines specific enzymatic, biomarker, and genetic testing to facilitate rapid, accurate laboratory diagnosis of Pompe disease and several other lysosomal storage diseases, and a multigene next-generation sequencing panel including Pompe disease, LGMD, and other neuromuscular disorders. This article reports data for Pompe disease collected from October 2018 through December 2021, including acid α-glucosidase (GAA) enzyme assay and GAA sequencing (standard or expedited for positive newborn screening [NBS] to rule out infantile-onset Pompe disease [IOPD]) and the Focused Neuromuscular Panel, which includes GAA. One hundred forty patients (12 received only GAA enzyme testing, 128 had GAA sequencing alone or in addition to enzyme assay) have been confirmed with Pompe disease in this project. Eight of the 140 had a variant of unknown significance, but GAA activity ≤2.10 µmol/L/h, thus were confirmed with Pompe disease. Three diagnosed patients 0-2 years old had cross-reactive immunologic material (CRIM)-negative GAA variants and thus IOPD. One additional infant with presumptive IOPD had a homozygous frameshift c.1846del, likely CRIM-negative; symptoms were not provided. Among the 128 patients with molecular results, the c.-32-13T>G splice variant was homozygous in 11, compound-heterozygous in 98, and absent in 19. Proximal muscle weakness (58 patients) was the most common sign reported at testing; elevated creatine kinase (29 patients) was the most common laboratory result. The most common symptom categories were muscular (73 patients), musculoskeletal (13 patients), and respiratory (23 patients). Clinical information was not available for 42 samples, and 17 infants had only "abnormal NBS" or "low GAA" reported. Cardiac symptoms in 7 included potentially age-related conditions in five c.-32-13T>G-compound-heterozygous adults (myocardial infarction, heart murmur/palpitations, congestive heart failure: 1 each; 2 with atrial fibrillation) and hypertrophic cardiomyopathy in 2 children (1 and 2 years old) with presumptive IOPD. One novel GAA variant was observed in a patient with enzyme activity 0.31 µmol/L/h: c.1853_1854ins49, a frameshift pathogenic variant. The Lantern Project demonstrates the combinatorial utility of enzyme assay, targeted single-gene testing, and a focused neuromuscular next-generation sequencing panel in diagnosing Pompe disease.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Lactente , Recém-Nascido , Adulto , Criança , Humanos , Pré-Escolar , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , alfa-Glucosidases/genética , Homozigoto , Triagem Neonatal , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Curr Protoc ; 3(2): e669, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36748823

RESUMO

Duchenne Muscular Dystrophy (DMD) is an X-linked inherited neuromuscular disorder caused by pathogenic variants in the dystrophin gene (DMD; locus Xp21.2). The variant spectrum of DMD is unique in that 65% of causative mutations are intragenic deletions, with intragenic duplications and point mutations (along with other sequence variants) accounting for 6% to 10% and 30% to 35%, respectively. The traditional strategy for molecular diagnostic testing for DMD involves initial screening for deletions/duplications using microarray-based comparative genomic hybridization followed by a full-sequence analysis of DMD for sequence variants. This traditional strategy is expensive and time-consuming due to the involvement of two separate tests to detect all types of variants in the DMD gene. Recent advancements in next-generation sequencing (NGS) technology and improvements in analysis algorithms related to copy number variant detection ultimately resulted in the development of a single NGS-based assay to detect all variant types, including deletions/duplications and sequence variants. This article initially discusses the strategic algorithm for establishing a molecular diagnosis of DMD and later provides detailed molecular diagnostic protocols for DMD, including an NGS-based sequencing assay with sequence and copy number variant analysis. © 2023 Wiley Periodicals LLC. Basic Protocol: Next-generation sequencing of the entire genomic sequence of the DMD gene using IDT xGen Lockdown Probes.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Hibridização Genômica Comparativa , Mutação , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
4.
Front Neurol ; 11: 559327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250842

RESUMO

Objective: Inherited myopathies comprise more than 200 different individually rare disease-subtypes, but when combined together they have a high prevalence of 1 in 6,000 individuals across the world. Our goal was to determine for the first time the clinical- and gene-variant spectrum of genetic myopathies in a substantial cohort study of the Indian subcontinent. Methods: In this cohort study, we performed the first large clinical exome sequencing (ES) study with phenotype correlation on 207 clinically well-characterized inherited myopathy-suspected patients from the Indian subcontinent with diverse ethnicities. Results: Clinical-correlation driven definitive molecular diagnosis was established in 49% (101 cases; 95% CI, 42-56%) of patients with the major contributing pathogenicity in either of three genes, GNE (28%; GNE-myopathy), DYSF (25%; Dysferlinopathy), and CAPN3 (19%; Calpainopathy). We identified 65 variant alleles comprising 37 unique variants in these three major genes. Seventy-eight percent of the DYSF patients were homozygous for the detected pathogenic variant, suggesting the need for carrier-testing for autosomal-recessive disorders like Dysferlinopathy that are common in India. We describe the observed clinical spectrum of myopathies including uncommon and rare subtypes in India: Sarcoglycanopathies (SGCA/B/D/G), Collagenopathy (COL6A1/2/3), Anoctaminopathy (ANO5), telethoninopathy (TCAP), Pompe-disease (GAA), Myoadenylate-deaminase-deficiency-myopathy (AMPD1), myotilinopathy (MYOT), laminopathy (LMNA), HSP40-proteinopathy (DNAJB6), Emery-Dreifuss-muscular-dystrophy (EMD), Filaminopathy (FLNC), TRIM32-proteinopathy (TRIM32), POMT1-proteinopathy (POMT1), and Merosin-deficiency-congenital-muscular-dystrophy-type-1 (LAMA2). Thirteen patients harbored pathogenic variants in >1 gene and had unusual clinical features suggesting a possible role of synergistic-heterozygosity/digenic-contribution to disease presentation and progression. Conclusions: Application of clinically correlated ES to myopathy diagnosis has improved our understanding of the clinical and genetic spectrum of different subtypes and their overlaps in Indian patients. This, in turn, will enhance the global gene-variant-disease databases by including data from developing countries/continents for more efficient clinically driven molecular diagnostics.

6.
Ann Clin Transl Neurol ; 6(4): 642-654, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31019989

RESUMO

OBJECTIVE: Dysferlin is a large transmembrane protein that functions in critical processes of membrane repair and vesicle fusion. Dysferlin-deficiency due to mutations in the dysferlin gene leads to muscular dystrophy (Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD2B), distal myopathy with anterior tibial onset (DMAT)), typically with early adult onset. At least 416 pathogenic dysferlin mutations are known, but for approximately 17% of patients, one or both of their pathogenic variants remain undefined following standard exon sequencing methods that interrogate exons and nearby flanking intronic regions but not the majority of intronic regions. METHODS: We sequenced RNA from myogenic cells to identify a novel dysferlin pathogenic variant in two affected siblings that previously had only one disease-causing variant identified. We designed antisense oligonucleotides (AONs) to bypass the effects of this mutation on RNA splicing. RESULTS: We identified a new pathogenic point mutation deep within dysferlin intron 50i. This intronic variant causes aberrant mRNA splicing and inclusion of an additional pseudoexon (PE, we term PE50.1) within the mature dysferlin mRNA. PE50.1 inclusion alters the protein sequence, causing premature translation termination. We identified this mutation in 23 dysferlinopathy patients (seventeen families), revealing it to be one of the more prevalent dysferlin mutations. We used AON-mediated exon skipping to correct the aberrant PE50.1 splicing events in vitro, which increased normal mRNA production and significantly restored dysferlin protein expression. INTERPRETATION: Deep intronic mutations can be a common underlying cause of dysferlinopathy, and importantly, could be treatable with AON-based exon-skipping strategies.


Assuntos
Disferlina/genética , Íntrons/genética , Distrofia Muscular do Cíngulo dos Membros/etiologia , Mutação/genética , Miopatias Distais/genética , Humanos , Íntrons/efeitos dos fármacos , Proteínas de Membrana/deficiência , Atrofia Muscular/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Splicing de RNA/efeitos dos fármacos
7.
Muscle Nerve ; 60(1): 98-103, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30990900

RESUMO

INTRODUCTION: UDP N-acetylglucosamine2-epimerase/N-acetylmannosamine-kinase (GNE) gene mutations can cause mostly autosomal-recessive myopathy with juvenile-onset known as hereditary inclusion-body myopathy (HIBM). METHODS: We describe a family of a patient showing an unusual HIBM with both vacuolar myopathy and myositis without quadriceps-sparing, hindering diagnosis. We show how genetic testing with functional assays, clinical transcriptome sequencing (RNA-seq) in particular, helped facilitate both the diagnosis and a better understanding of the genotype-phenotype relationship. RESULTS: We identified a novel 7.08 kb pathogenic deletion upstream of GNE using array comparative genomic hybridization (aCGH) and a common Val727Met variant. Using RNA-seq, we found only monoallelic (Val727Met-allele) expression, leading to ~50% GNE reduction in muscle. Importantly, α-dystroglycan is hypoglycosylated in the patient muscle, suggesting HIBM could be a "dystroglycanopathy." CONCLUSIONS: Our study shows the importance of considering aCGH for GNE-myopathies, and the potential of RNA-seq for faster, definitive molecular diagnosis of unusual myopathies. Muscle Nerve, 2019.


Assuntos
Miopatias Distais/genética , Complexos Multienzimáticos/genética , Regiões Promotoras Genéticas/genética , Hibridização Genômica Comparativa , Miopatias Distais/diagnóstico , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Distroglicanas/metabolismo , Família , Deleção de Genes , Glicosilação , Humanos , Masculino , Técnicas de Diagnóstico Molecular , Músculo Quadríceps/patologia , Análise de Sequência de RNA , Adulto Jovem
8.
Ann Clin Transl Neurol ; 5(12): 1574-1587, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30564623

RESUMO

OBJECTIVE: Limb-girdle muscular dystrophies (LGMDs), one of the most heterogeneous neuromuscular disorders (NMDs), involves predominantly proximal-muscle weakness with >30 genes associated with different subtypes. The clinical-genetic overlap among subtypes and with other NMDs complicate disease-subtype identification lengthening diagnostic process, increases overall costs hindering treatment/clinical-trial recruitment. Currently seven LGMD clinical trials are active but still no gene-therapy-related treatment is available. Till-date no nation-wide large-scale LGMD sequencing program was performed. Our objectives were to understand LGMD genetic basis, different subtypes' relative prevalence across US and investigate underlying disease mechanisms. METHODS: A total of 4656 patients with clinically suspected-LGMD across US were recruited to conduct next-generation sequencing (NGS)-based gene-panel testing during June-2015 to June-2017 in CLIA-CAP-certified Emory-Genetics-Laboratory. Thirty-five LGMD-subtypes-associated or LGMD-like other NMD-associated genes were investigated. Main outcomes were diagnostic yield, gene-variant spectrum, and LGMD subtypes' prevalence in a large US LGMD-suspected population. RESULTS: Molecular diagnosis was established in 27% (1259 cases; 95% CI, 26-29%) of the patients with major contributing genes to LGMD phenotypes being: CAPN3(17%), DYSF(16%), FKRP(9%) and ANO5(7%). We observed an increased prevalence of genetically confirmed late-onset Pompe disease, DNAJB6-associated LGMD subtype1E and CAPN3-associated autosomal-dominant LGMDs. Interestingly, we identified a high prevalence of patients with pathogenic variants in more than one LGMD gene suggesting possible synergistic heterozygosity/digenic/multigenic contribution to disease presentation/progression that needs consideration as a part of diagnostic modality. INTERPRETATION: Overall, this study has improved our understanding of the relative prevalence of different LGMD subtypes, their respective genetic etiology, and the changing paradigm of their inheritance modes and novel mechanisms that will allow for improved timely treatment, management, and enrolment of molecularly diagnosed individuals in clinical trials.

9.
Curr Protoc Hum Genet ; 94: 10.12.1-10.12.23, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696559

RESUMO

Hereditary nonpolyposis colorectal cancer (HNPCC), also called Lynch syndrome, is an autosomal dominant cancer syndrome that confers an elevated risk of early-onset colorectal cancer (CRC) and increased lifetime risk for other cancers of the endometrium, stomach, small intestine, hepatobiliary system, kidney, ureter, and ovary. Lynch syndrome accounts for up to 3% of all CRC, making it the most common hereditary colorectal cancer syndrome. Germline mutations in methyl-directed mismatch repair (MMR) genes give rise to microsatellite instability (MSI) in tumor DNA. Lynch syndrome is most frequently caused by pathogrenic variants in the mismatch repair genes MLH1, MSH2, MSH6, and PMS2. Germline mutations in MLH1 and MSH2 account for approximately 90% of detected mutations in families with Lynch syndrome. Pathogenic vatiants in MSH6 have been reported in approximately 7-10% of families with Lynch syndrome. Pathogenic variants in PMS2 account for fewer than 5% of mutations in families with Lynch syndrome. This unit presents a comprehensive molecular genetic testing strategy for Lynch syndrome including MSI analysis, next generation sequencing (NGS)-based targeted sequence analysis, PCR-based Sanger sequencing and microarray-based comparative genomic hybridization (array-CGH). © 2017 by John Wiley & Sons, Inc.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Testes Genéticos/métodos , Hibridização Genômica Comparativa , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Instabilidade de Microssatélites
11.
Curr Protoc Hum Genet ; 92: 10.8.1-10.8.16, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28075483

RESUMO

Hereditary forms of colorectal cancer (CRC) account for up to 5% of total cases. Familial adenomatous polyposis (FAP) is an autosomal dominant condition affecting nearly 1 in 5000 people and accounts for only about 1% of all CRCs. It is characterized by the progressive development of hundreds to thousands of adenomatous colon polyps. The gene associated with FAP (APC) contains 15 coding exons. The mutation spectrum of the APC gene is broad in that 87% of causative mutations are point mutations (including other sequence variants) and around 10% to 15% are intragenic deletions and duplications. The strategy for molecular diagnostic testing for FAP involves initial full sequence analysis of APC for sequence variants followed by screening for deletion/duplications using microarray-based comparative genomic hybridization (array CGH) or Multiplex Ligation-dependent Probe Amplification (MLPA). Recently, next generation sequencing (NGS)-based targeted gene analysis has become clinically available for detection of point mutations and other sequence variants. This unit discusses detailed protocols for an NGS-based sequencing assay, PCR-based Sanger sequencing, and array CGH. © 2017 by John Wiley & Sons, Inc.


Assuntos
Polipose Adenomatosa do Colo/genética , Análise Mutacional de DNA/métodos , Genes APC , Mutação , Hibridização Genômica Comparativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
12.
Proteomes ; 4(1)2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248216

RESUMO

The distinct stages of cotton fiber development and maturation serve as a single-celled model for studying the molecular mechanisms of plant cell elongation, cell wall development and cellulose biosynthesis. However, this model system of plant cell development is compromised for proteomic studies due to a lack of an efficient protein extraction method during the later stages of fiber development, because of a recalcitrant cell wall and the presence of abundant phenolic compounds. Here, we compared the quality and quantities of proteins extracted from 25 dpa (days post anthesis) fiber with multiple protein extraction methods and present a comprehensive quantitative proteomic study of fiber development from 10 dpa to 25 dpa. Comparative analysis using a label-free quantification method revealed 287 differentially-expressed proteins in the 10 dpa to 25 dpa fiber developmental period. Proteins involved in cell wall metabolism and regulation, cytoskeleton development and carbohydrate metabolism among other functional categories in four fiber developmental stages were identified. Our studies provide protocols for protein extraction from maturing fiber tissues for mass spectrometry analysis and expand knowledge of the proteomic profile of cotton fiber development.

14.
Curr Protoc Hum Genet ; 83: 9.25.1-29, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25271841

RESUMO

Duchenne Muscular Dystrophy (DMD) is an X-linked inherited neuromuscular disorder caused by mutations in the dystrophin gene (DMD; locus Xp21.2). The mutation spectrum of DMD is unique in that 65% of causative mutations are intragenic deletions, with intragenic duplications and point mutations (along with other sequence variants) accounting for 6% to 10% and 30% to 35%, respectively. The strategy for molecular diagnostic testing for DMD involves initial screening for deletions/duplications using microarray-based comparative genomic hybridization (array-CGH) followed by full-sequence analysis of DMD for sequence variants. Recently, next-generation sequencing (NGS)-based targeted gene analysis has become clinically available for detection of point mutations and other sequence variants (small insertions, deletions, and indels). This unit initially discusses the strategic algorithm for establishing a molecular diagnosis of DMD and later provides detailed protocols of current molecular diagnostic methods for DMD, including array-CGH, PCR-based Sanger sequencing, and NGS-based sequencing assay.


Assuntos
Distrofia Muscular de Duchenne/diagnóstico , Distrofina/genética , Humanos , Distrofia Muscular de Duchenne/genética
15.
PLoS One ; 9(2): e89283, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586658

RESUMO

Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions.


Assuntos
Lisina/química , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/análise , Acetilação , Sequência de Aminoácidos , Fenômenos Biológicos , Western Blotting , Cromatografia de Afinidade , Ontologia Genética , Humanos , Lisina/metabolismo , Dados de Sequência Molecular , Oryza , Proteínas de Plantas/genética , Proteômica , Espectrometria de Massas em Tandem
16.
Proteome Sci ; 11(1): 26, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23777608

RESUMO

Plant cells are routinely exposed to various pathogens and environmental stresses that cause cell wall perturbations. Little is known of the mechanisms that plant cells use to sense these disturbances and transduce corresponding signals to regulate cellular responses to maintain cell wall integrity. Previous studies in rice have shown that removal of the cell wall leads to substantial chromatin reorganization and histone modification changes concomitant with cell wall re-synthesis. But the genes and proteins that regulate these cellular responses are still largely unknown. Here we present an examination of the nuclear proteome differential expression in response to removal of the cell wall in rice suspension cells using multiple nuclear proteome extraction methods. A total of 382 nuclear proteins were identified with two or more peptides, including 26 transcription factors. Upon removal of the cell wall, 142 nuclear proteins were up regulated and 112 were down regulated. The differentially expressed proteins included transcription factors, histones, histone domain containing proteins, and histone modification enzymes. Gene ontology analysis of the differentially expressed proteins indicates that chromatin & nucleosome assembly, protein-DNA complex assembly, and DNA packaging are tightly associated with cell wall removal. Our results indicate that removal of the cell wall imposes a tremendous challenge to the cells. Consequently, plant cells respond to the removal of the cell wall in the nucleus at every level of the regulatory hierarchy.

17.
PLoS Genet ; 9(3): e1003322, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505380

RESUMO

Cereal endosperm represents 60% of the calories consumed by human beings worldwide. In addition, cereals also serve as the primary feedstock for livestock. However, the regulatory mechanism of cereal endosperm and seed development is largely unknown. Polycomb complex has been shown to play a key role in the regulation of endosperm development in Arabidopsis, but its role in cereal endosperm development remains obscure. Additionally, the enzyme activities of the polycomb complexes have not been demonstrated in plants. Here we purified the rice OsFIE2-polycomb complex using tandem affinity purification and demonstrated its specific H3 methyltransferase activity. We found that the OsFIE2 gene product was responsible for H3K27me3 production specifically in vivo. Genetic studies showed that a reduction of OsFIE2 expression led to smaller seeds, partially filled seeds, and partial loss of seed dormancy. Gene expression and proteomics analyses found that the starch synthesis rate limiting step enzyme and multiple storage proteins are down-regulated in OsFIE2 reduction lines. Genome wide ChIP-Seq data analysis shows that H3K27me3 is associated with many genes in the young seeds. The H3K27me3 modification and gene expression in a key helix-loop-helix transcription factor is shown to be regulated by OsFIE2. Our results suggest that OsFIE2-polycomb complex positively regulates rice endosperm development and grain filling via a mechanism highly different from that in Arabidopsis.


Assuntos
Grão Comestível , Oryza , Proteínas do Grupo Polycomb , Sementes , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase , Complexos Multiproteicos , Oryza/genética , Oryza/crescimento & desenvolvimento , Dormência de Plantas/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
18.
Electrophoresis ; 29(3): 604-17, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18203134

RESUMO

Endosperm is a highly specialized storage organ with three sets of genomes. It is one of the most economically important organs in plants. Endosperm development involves parental imprinting and endoreduplication. A thorough study of the endosperm proteome, particularly the nuclear proteome, may provide critical insight into the regulation of seed development. Unfortunately, endosperm is extremely rich in starch grains and protein bodies of different sizes, making proteome studies on nonstorage proteins, particularly the low-abundance proteins, very challenging. Here we have developed a chromatographic method to remove large starch grains and an electrophoresis method to recover low-abundance proteins, respectively. Using these methods, we have identified 468 proteins from the nuclear enriched fraction of rice endosperm, including transcription factors, histone modification proteins, kinetochore proteins, centromere/microtubule binding proteins, and transposon proteins. Among the 468 proteins, 208 (44%) are hypothetical proteins, indicating that the endosperm proteome is poorly explored. In addition, analyses of the MS/MS data using BioWorks 3.1 have identified 59 putative acetylated proteins and 40 putative methylated proteins. Our studies have developed a method to remove starch grains and recover low-abundance proteins, respectively. The methods should be applicable to other organisms.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Oryza/química , Proteínas de Plantas/isolamento & purificação , Acetilação , Sequência de Aminoácidos , Cromatografia Líquida/métodos , Genoma de Planta , Metilação , Dados de Sequência Molecular , Peso Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteoma/isolamento & purificação , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...